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There is a growing body of observational evidence on inhomogeneous cloud

structure, most recently from the extensive measuements of the FIRE field pro-

gram (Albrecht et al., 1988). Knowledge of cloud structure is important because

it strongly influences the cloud radiative properties, one of the major factors in

determining the global energy balance. Current atmospheric circulation models

use plane-parallel radiation, so that the liquid water in each gridbox is assumed

to be uniform, which gives an unrealistically large albedo, forcing the models to

divide the liquid water by a "fudge factor" to get the albedo right (Harshvard-
han and Randall, 1985). In reality cloud liquid water occupies only a subset of

each gridbox, greatly reducing the mean albedo. If future climate models are

to treat the hydrological cycle in a manner consistent with energy balance, a

better treatment of cloud liquid water will be needed.

FIRE concentrated upon two cloud types of special interest: cirrus and ma-
rine stratocumulus. Cirrus tend to be high and optically thin, thus reducing

the effective radiative temperature without increasing the albedo significantly,

leading to an enhanced greenhouse heating. In contrast, marine stratocumulus

are low and optically thick, thus producing a large increase in reflected radiation

with a small change in emitted radiation, giving a net cooling which could po-
tentially mitigate the expected greenhouse warming. The FIRE measurements

in California stratocumulus during June and July of 1987 show variations in

cloud liquid water on all scales. Boers and Betts (1988) describe the verti-

cal structure, while Cahalan and Snider (1989, hereafter CS) discuss horizontal

variations, which is our focus here. Such variations are associated with inhomo-

geneous entrainment, in which entrained dry air, rather than mixing uniformly
with cloudy air, remains intact in blobs of all sizes, which decay only slowly

by invasion of cloudy air. The following paragraphs describe two important
stratocumulus observations, then follows a simple fractal model which repro-

duces these properties, and the paper concludes by briefly discussing the model

radiative properties.
Vertically integrated liquid water was measured at 10 ltz and averaged over
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Figure 1: (a) Histogram of logarithm of vertically integrated stratocumulus

liquid water in mm along with a lognormal fit. The equivalent optical depth

scale shown at the top assumes a 10 micron effective radius. (b) Wavenumber
spectrum of integrated liquid water computed from time series assuming 5 m/s
frozen turbulence.

1 minute intervals during a 3-week period on San Nicolas Island. The histogram
of this data is shown in the first figure on a log-linear scale, with a Iognormal fit

plotted for comparison. The lognormal roughly follows the data, while differing

in detail. The "shoulders" seen to each side of the observed central peak are a

reminder that individual days often show a bimodal distribution.

The liquid water wavenumber spectrum shown in the second figure was es-

timated from the frequency spectra computed from several 1-day time series

from the same 19-day data set used for the histogram. Results were translated

from frequency to wavenumber assuming frozen turbulence with a 5 m/s mean

advection. The least-squares fit over the mesoscale regime from about 400 km

down to about 400 m gives S(k) "-, k -_/3.

This is the spectrum expected from a "passive" scalar (i.e. a scalar field

whose variations in space and time are due only to advection.) when energy

from a small-scale source (convection) !s being transferred to larger scales by

2-dimensional homogeneous turbulence (Kraichnan, 1967; Lilly, 1989). This

mesoscale 5/3 power spectrum was previously observed in velocity and poten-

tial temperature spectra from commercial aircraft data (Gage and Nastrom,

1986). The fact that the mesoscale liquid water spectrum is that expected for
a 2-dimensional passive scalar -- one being forced by small-scale convection --

suggests that the total integrated liquid water in stratocumulus clouds fluctu-

ates with the mesoscale-averaged vertical velocity, being large in updrafts and
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small in downdrafts. This kind of behavior has been observed in fine-resolution

numerical simulations (MacVean and Nicholls, 1988), though they do not repro-

duce the highly irregular fractal structure described above. At scales smaller
than the cloud thickness (about 200 m) the spectrum drops off more rapidly,

the slope being closer to -3 (CS). This within-cloud regime is still poorly un-

derstood, but is apparently not consistent with a 3-dimensional homogeneous

cascade of energy from larger scales, which would also give a 5/3. The steep
falioff could be related to the distribution of energy sources and sinks, including

the active role of condensation, or to the inhomogeneity of the transfer process.

More work is needed on the within-cloud regime, but the following focuses upon
the mesoscale structure because of its greater impact on the large-scale energy

balance.
In order to simulate the mesoscale fractal structure of stratocumulus liquid

water, a procedure is needed to generate a random function having the probabil-

ity and spectrum shown above. As a first step, variations in only one horizontal
direction will be allowed, forming fractal streets, a simplified version of the cloud

streets observed in the July 7 Landsat scene during FIRE (CS). Consider a stra-

tocumulus cloud forming an infinitely long slab of horizontal width L _ 100kin

and a typical optical depth of, say, 7"o= 10. Divide this into two slabs of width

L/2, and transfer a fraction fl of the liquid water from one half to the other,
with the direction chosen at random. The optical depth in one half is then in-

creased (by increasing the density -- thickness is assumed unchanged), and the

other half is correspondingly thinned. This may be written r_*) = (1 4- fl)r0.

where the superscript on the left indicates whether the brighter or darker half

is being considered.
To continue the process, each half is itself divided in half, and a fraction of

liquid water, f2, is transferred, again in a random direction. After iterating for
n cascade steps, there are 2 '_ segments, each with an optical depth of the form

ti

r.<*- = H(l (I)
k=l

where 0 < f_ < I. Any of the possible combinations of signs in (1) may be found

somewhere among the 2 )) segments. An upper bound on the optical depth of

the optically thickest segment may be found from

" "= H(I + fk) < exp(/_)= exp(_ f_). (2)
k--I k-----I k--1

Consider two cases: a "singular model" in which the fraction does not change

with k (i.e. fk = f), and a "bounded model" in which the fraction decreases

(i.e. fk = fc j:, where f and c are both constants between 0 and 1). The upper

bound given by (2) diverges for the singular model, and one can show that the

liquid water becomes concentrated on a fractal set of singularities as n --* _.
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The upper bound for the bounded model is exp(fc/(1 - e))ro, and is close to

r,n.r. It is possible to show that both models have a wavenumber spectrum of

the form S(k) _ k -a, where

I 1 - in2(1 + f2), (singular model)c_ = 1 - in2(c2), (bounded model) (3)

Note that as f --_ 1, the exponent of the singular model approaches zero, giving

a flat spectrum, while as f --* 0 the spectrum steepens to k -1. No value of f

allows the singular model to fit the observed k -s/3 spectrum. The exponent of

the bounded model, on the other hand, gives a = 5/3 if we choose c = 2-1/3

The probability density is sensitive to c, and often shows considerable structure,
but when c = 2-1/3 it is close to lognormal, and similar to the first figure.

These simple models of one-dimensional fractal cloud streets can be gener-
alized to allow variations in three dimensions and tuned to simulate other cloud

types. The albedo and other radiation properties are computed by Monte Carlo

techniques, and results are parameterized to provide alternatives to plane par-

allel theory. For the stratocumulus models the redistribution of liquid water
at each iteration decreases the mean albedo from the plane parallel case, since

the albedo of optically thick regions saturates for large optical depths, so that

realistic amounts of cloud liquid water lead to realistic albedos (Cahalan, 1989).

Much remains to be done both in documenting the global climatology of cloud

fractal structure and in understanding the physical processes underlying this
structure, but improved observations and more appropriate analytical tools are

finally allowing the great complexity of cloud liquid water to be approximated

as something other than a uniform distribution.
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